Multiple datasets in memory in Stata 16
You can now load multiple datasets into memory. You type
. use people
and people.dta is loaded into memory. Next, you type
. frame create counties
. frame counties: use counties
and you have two datasets in memory. people.dta is in the frame named default, and counties.dta is in the frame named counties. Your current frame is still default. Most Stata commands use the data in the current frame. For example, if you typed
. list
then people.dta will be listed. If you typed
. frame counties: list
then counties.dta will be listed. Or you could make counties the current frame by typing
. frame change counties
and list will now list the counties data.
Navigating frames is easy and so is linking them. Imagine that both datasets have a variable named countycode that identifies counties in the same way. Type
. frlink m:1 countycode, frame(counties)
and each person in the default frame is linked to a county in the counties frame. This means you can now use the frget command to copy variables from the counties frame to the current frame. Or you can use the frval() function to directly access the values of variables in the counties frame. For instance, if we have each individual’s income in the default frame and median county income in the counties frame, we can generate a new variable containing relative income by typing
. generate rel_income = income / frval(counties, median_income)
This is just the beginning. While this example uses only two frames, you can have up to 100 frames in memory at once, and you can have many links among those frames.

In Stata 16, we introduce a new, unified suite of commands for modeling choice data. We have added new commands for summarizing choice data. We renamed and improved existing commands for fitting choice models. We even added a new command for fitting mixed logit models for panel data. And we document them together in the new Choice Models Reference Manual.
And here’s the best part: margins now works after fitting choice models. This means you can now easily interpret the results of your choice models. While the coefficients estimated in choice models are often almost uninterpretable, margins allows you to ask and answer very specific questions based on your results. Say that you are modeling choice of transportation. You can answer questions such as
• What proportion of travelers are expected to choose air travel?
• How does the probability of traveling by car change for each additional $10,000 in income?
• If wait times at the airport increase by 30 minutes, how does this affect the choice of each mode of transportation?
What else is new? You now cmset your data before fitting a choice model. For instance,
. cmset personid transportmethod
Then, you use cmsummarize, cmchoiceset, cmtab, and cmsample to explore, summarize, and look for potential problems in your data.
And you use cm estimation commands to fit one of the following choice models:
• cmclogit conditional logit (McFadden’s choice) model
• cmmixlogit mixed logit model
• cmxtmixlogit panel-data mixed logit model
• cmmprobit multinomial probit model
• cmroprobit rank-ordered probit model
• cmrologit rank-ordered logit model
Unlike the others, cmxtmixlogit is not just renamed and improved. It is completely new in Stata 16, and

Nonlinear DSGE models in Stata 15
In Stata 15, we introduced the dsge command for fitting linear DSGE models, which are time-series models used in economics and finance. These models are an alternative to traditional forecasting models. Both attempt to explain aggregate economic phenomena, but DSGE models do this on the basis of models derived from microeconomic theory.
New in Stata 16, the dsgenl command fits nonlinear DSGE models. Most DSGE models are nonlinear, and this means that you no longer need to linearize them by hand. When you enter equations into dsgenl, it linearizes them for you.
After estimating the parameters of your model with dsgenl, you can obtain the transition and policy matrices; determine the model’s steady state; estimate variables’ variances, covariances, and autocovariances implied by the system of equations; and create and graph impulse–response functions.
This is likely to be the favorite feature of macroeconomists and anyone working in a central bank.

-/gjiiih/-
http://turntech8843.b2b168.com