正版软件_stata软件版本
  • 正版软件_stata软件版本
  • 正版软件_stata软件版本
  • 正版软件_stata软件版本

产品描述

使用期限租赁或* 许可形式单机和网络版 原产地美国 介质下载 适用平台window,mac,linux
科学软件网销售软件达19年,有丰富的销售经验以及客户资源,提供的产品涵盖各个学科,包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。此外,我们还提供很多附加服务,如:现场培训、课程、解决方案、咨询服务等。
Nonparametric series regression
Stata 16's new npregress series command fits nonparametric series regressions that approximate the mean of the dependent variable using polynomials, B-splines, or splines of the covariates. This means that you do not need to specify any predetermined functional form. You specify only which covariates you wish to include in your model. For instance, type
. npregress series wineoutput rainfall temperature i.irrigation
Instead of reporting coefficients, npregress series reports effects, meaning average marginal effects for continuous variables and contrasts for categorical variables. The results might be that the average marginal effect of rainfall is 1 and the contrast for irrigation is 2. This contrast can be interpreted as the average treatment effect of irrigation.
Being a nonparametric regression, the unknown mean is approximated by a series function of the covariates. And yet we can still obtain the inferences that we could from a parametric model. We  use margins. We could type
. margins irrigation, at(temperature=(40(5)90))
and obtain a table of the expected effect of having irrigation at temperatures of 40, 50, ..., 90 degrees. And we could graph the result using marginsplot.
Even more, npregress series can fit partially parametric (semiparametric) models.
stata软件版本
Multiple datasets in memory  in Stata 16
You can now load multiple datasets into memory. You type
. use people
and people.dta is loaded into memory. Next, you type
. frame create counties
. frame counties: use counties
and you have two datasets in memory. people.dta is in the frame named default, and counties.dta is in the frame named counties. Your current frame is still default. Most Stata commands use the data in the current frame. For example, if you typed
. list
then people.dta will be listed. If you typed
. frame counties: list
then counties.dta will be listed. Or you could make counties the current frame by typing
. frame change counties
and list will now list the counties data.
Navigating frames is easy and so is linking them. Imagine that both datasets have a variable named countycode that identifies counties in the same way. Type
. frlink m:1 countycode, frame(counties)
and each person in the default frame is linked to a county in the counties frame. This means you can now use the frget command to copy variables from the counties frame to the current frame. Or you can use the frval() function to directly access the values of variables in the counties frame. For instance, if we have each individual’s income in the default frame and median county income in the counties frame, we can generate a new variable containing relative income by typing
. generate rel_income = income / frval(counties, median_income)
This is  the beginning. While this example uses only two frames, you can have up to 100 frames in memory at once, and you can have many links among those frames.
stata软件版本
In Bayesian analysis, we can use previous information, either belief or experimental evidence, in
a data model to acquire more balanced results for a particular problem. For example, incorporating
prior information can mitigate the effect of a small sample size. Importantly, the use of the prior
evidence is achieved in a theoretically sound and principled way.
By using the knowledge of the entire posterior distribution of model parameters, Bayesian inference
is far more comprehensive and flexible than the traditional inference.
Bayesian inference is exact, in the sense that estimation and prediction are based on the posterior
distribution. The latter is either known analytically or can be estimated numerically with an arbitrary
precision. In contrast, many frequentist estimation procedures such as maximum likelihood rely on
the assumption of asymptotic normality for inference.
stata软件版本
We consider two types of CRIs. The first one is based on quantiles. The second one is the highest
posterior density (HPD) interval.
An f(1 ��  )  100g% quantile-based, or also known as an equal-tailed CRI, is defined as
(q =2; q1�� =2), where qa denotes the ath quantile of the posterior distribution. A commonly reported
equal-tailed CRI is (q0:025; q0:975).
HPD interval is defined as an f(1 ��  )  100g% CRI of the shortest width. As its name implies,
this interval corresponds to the region of the posterior density with the highest concentration. For a
unimodal posterior distribution, HPD is unique, but for a multimodal distribution it may not be unique.
Computational approaches for calculating HPD are described in Chen and Shao (1999) and Eberly
and Casella (2003).
科学软件网为全国大多数高校提供过产品或服务,销售和售后团队,确保您售后**!
http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3279851位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图