使用期限租赁或*
许可形式单机和网络版
原产地美国
介质下载
适用平台window,mac,linux
北京天演融智软件有限公司(科学软件网)前身是北京世纪天演科技有限公司,成立于2001年,专注为国内高校、科研院所和以研发为主的企事业单位提供科研软件和服务的国家。
Stata是一款完整的、集成的统计软件包,提供您需要的一切数据分析、数据管理和图形。
统计功能介绍
Stata使得大量的统计工具用于指尖
标准方法,如
基本表格和总结
案例对照分析
ARIMA
ANOVA 和MANOVA
线性回归
时间序列平滑
广义线性模型(GLM)
聚类分析
对比和比较
功率分析
样本选择
……
方法,如
多层模型
生存分析
动态面板数据回归
结构方程建模
二进制,计数和审查结果
ARCH
多重替代法
调查数据
Treatment effects
统计
贝叶斯分析
……
Stata是一个统计分析软件,但它也具有很强的程序语言功能,这给用户提供了一个广阔的开发应用的天地,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。事实上,Stata的ado文件(统计部分)都是用Stata自己的语言编写的。
Stata其统计分析能力远远**过了SPSS,在许多方面也**过了SAS!由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此计算速度较快(一般来说, SAS的运算速度要比SPSS至少快一个数量级,而Stata的某些模块和执行同样功能的SAS模块比,其速度又比SAS快将近一个数量级!)Stata也是采用命令行方式来操作,但使用上远比SAS简单。其生存数据分析、纵向数据(重复测量数据)分析等模块的功能甚至**过了SAS。用Stata绘制的统计图形相当精美,很有特色。
科学软件网是一个以引进国外科研软件,提供软件服务的营业,由天演融智软件有限公司创办,旨在为国内高校、科研院所和以研发为主的企业事业单位提供的科研软件及相关软件服务。截止目前,科学软件网已获得数百家国际软件公司正式授权,代理销售科研软件达一千余种,软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供培训、视频课程(包含34款软件,64门课程)、实验室解决方案和项目咨询等服务。
不管您是需要购买单款软件,还是制定整个实验室的购买方案,都可以提供。

We are excited to introduce you to the new features in Stata 16. Below, we list highlights of the release. In what follows, we tell you a little more about the first 13 of them. We introduce each feature using words that you might also use as you introduce them to existing and potential Stata users.
The majority of these features will be exciting to researchers in all disciplines. Where appropriate, we will highlight which disciplines will be most interested or provide advice about how different groups of users will relate to the feature. We

Remarks and examples
Remarks are presented under the following headings:
What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics
Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction
Bayesian computation
Markov chain Monte Carlo methods
Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC
Summary
The first five sections provide a general introduction to Bayesian analysis. The remaining sections
provide a more technical discussion of the concepts of Bayesian analysis.

mean and posterior standard deviation, involve integration. If the integration cannot be performed
analytically to obtain a closed-form solution, sampling techniques such as Monte Carlo integration
and MCMC and numerical integration are commonly used.
Bayesian hypothesis testing can take two forms, which we refer to as interval-hypothesis testing
and model-hypothesis testing. In an interval-hypothesis testing, the probability that a parameter or
a set of parameters belongs to a particular interval or intervals is computed. In model hypothesis
testing, the probability of a Bayesian model of interest given the observed data is computed.
Model comparison is another common step of Bayesian analysis. The Bayesian framework provides
a systematic and consistent approach to model comparison using the notion of posterior odds and
related to them Bayes factors. See [BAYES] bayesstats ic for details.
Finally, prediction of some future unobserved data may also be of interest in Bayesian analysis.
The prediction of a new data point is performed conditional on the observed data using the so-called
posterior predictive distribution, which involves integrating out all parameters from the model with
respect to their posterior distribution. Again, Monte Carlo integration is often the only feasible option
for obtaining predictions. Prediction can also be helpful in estimating the goodness of fit of a model.
科学软件网不定期举办各类公益培训和讲座,让您有更多机会免费学习和熟悉软件。
http://turntech8843.b2b168.com