使用期限*
许可形式单机和网络版
原产地美国
介质下载
适用平台windows,mac
科学软件网提供软件和培训服务已有19年,拥有丰富的经验,提供软件产品上千款,涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时还有的服务,现场培训+课程,以及本地化服务。
Mplus是一款统计建模程序,给研究人员提供了一个灵活的分析数据的工具。Mplus界面简单、数据和分析结果以图形显示,为研究人员提供广泛的模型、估计和算法的选择。Mplus允许进行横截面和纵向、单级和多级数据分析;来自不同人群的观测数据或未观测到的异质性数据,以及包含缺失值的数据都可以进行分析。可以对连续、删失、二进制、有序分类(序数)、无序类别(计数)、计数或这些变量类型的组合观测变量都可以进行分析。此外,Mplus还具有广泛的蒙特卡罗模拟功能,程序中包含的任何模型,都可以生成和分析数据。
Mplus Base Program
Mplus Base Program可以估计回归、路径分析、探索性因素分析和验证性因素分析(EFA和CFA)、结构方程模型(SEM)、增长以及离散和连续时间生存分析模型。在回归和路径分析模型中,观测到的因变量可以是连续的、删失的、二进制的、有序的(序数)、计数或这些变量类型的组合。此外,对于非中介变量的回归分析和路径分析,观测到的因变量可以是无序的分类(名义上)。在探索性因素分析中,因素指标可以是连续的、二进制的、有序的分类(排序)或是这些变量类型的组合。在CFA、SEM和增长模型中,观测到的因变量可以是连续的、删失的、二元的、有序的(序数)、无序的分类(名词)、计数或这些变量类型的组合。其他的功能包括单组或多组分析,缺失数据估计;复杂的调查数据分析,包括分层,聚类,和不平等的选择概率(抽样权重);用较大似然法分析潜在变量相互作用和非线性因素;随机斜率;个体变化的观测次数;非线性参数约束;间接影响;所有结果类型的较大似然估计。引导的标准误差和置信区间;贝叶斯分析与多重归责原则;蒙特卡罗模拟功能以及后处理图形模型。

Mplus是一款统计建模程序,给研究人员提供了一个灵活的分析数据的工具。Mplus界面简单、数据和分析结果以图形显示,为研究人员提供广泛的模型、估计和算法的选择。Mplus允许进行横截面和纵向、单级和多级数据分析;来自不同人群的观测数据或未观测到的异质性数据,以及包含缺失值的数据都可以进行分析。可以对连续、删失、二进制、有序分类(序数)、无序类别(计数)、计数或这些变量类型的组合观测变量都可以进行分析。此外,Mplus还具有广泛的蒙特卡罗模拟功能,程序中包含的任何模型,都可以生成和分析数据。
Mplus的建模框架借鉴了潜变量的统一主题。而且一般的建模框架来自连续和分类潜变量的使用。连续潜变量用于表示与未观测到的构造相对应的因素,随机效应与发展中的个体差异相对应,随机效应与分层数据中各组间系数变化相对应,弱点对应于生存时间的异质性,责任与疾病遗传易感性相对应,潜在响应变量值与缺失数据相对应。分类潜变量对应于均质个体群,潜在的轨迹分类对应于未观测种群的发展类型,混合组件对应于未观测种群的有限混合,潜在响应变量类别对应于缺失数据。
Mplus Base Program and Combination Add-On
Mplus Base Program and Combination Add-On包含了Mplus Base Program and the Mixture and Multilevel Add-Ons的所有功能。此外,它还包括处理同一模型中的集群数据和潜在类的模型。例如,两级回归混合分析、二级混合验证因子分析(CFA)和结构方程模型(SEM)、二级潜类分析、多层增长混合模型、二级离散和连续时间生存混合分析。其他功能包括缺失数据估计;复杂的调查数据分析,包括分层、聚类和不平等的选择概率(抽样权重);用较大似然法分析潜在变量相互作用和非线性因素;随机斜率;个体变化的观测次数;非线性参数约束;所有结果类型的较大似然估计。贝叶斯分析与多重归责原则;蒙特卡罗模拟功能以及后处理图形模型。
适用平台
Microsoft Windows 7/8/10
Mac OS X 10.8或更高版本
Linux (已在下面的平台中测试过: Ubuntu, RedHat, Fedora, Debian和Gentoo)
至少1GB以上的内存
至少120 MB硬盘空间

The Mplus Base Program and Multilevel Add-On contains all of the features of the Mplus Base Program. In addition, it estimates models for clustered data using multilevel models. These models include multilevel regression analysis, multilevel path analysis, multilevel factor analysis, multilevel structural equation modeling, multilevel growth modeling, and multilevel discrete- and continuous-time survival models. In multilevel analysis, observed dependent variables can be continuous, censored, binary, ordered categorical (ordinal), unordered categorical (nominal), counts, or a combination of these variable types. Other special features include single or multiple group analysis; missing data estimation; complex survey data analysis including stratification, clustering, and unequal probabilities of selection (sampling weights); latent variable interactions and non-linear factor analysis using maximum likelihood; random slopes; individually-varying times of observation; non-linear parameter constraints; maximum likelihood estimation for all outcomes types; Bayesian analysis and multiple imputation; Monte Carlo simulation facilities; and a post-processing graphics module.

Mplus的建模框架借鉴了潜变量的统一主题。而且一般的建模框架来自连续和分类潜变量的使用。连续潜变量用于表示与未观测到的构造相对应的因素,随机效应与发展中的个体差异相对应,随机效应与分层数据中各组间系数变化相对应,弱点对应于生存时间的异质性,责任与疾病遗传易感性相对应,潜在响应变量值与缺失数据相对应。分类潜变量对应于均质个体群,潜在的轨迹分类对应于未观测种群的发展类型,混合组件对应于未观测种群的有限混合,潜在响应变量类别对应于缺失数据。
科学软件网不仅提供软件产品,更有多项附加服务免费提供,让您售后**!
http://turntech8843.b2b168.com