使用期限租赁或*
许可形式单机和网络版
原产地美国
介质下载
适用平台window,mac,linux
科学软件网提供软件和培训服务已有19年,拥有丰富的经验,提供软件产品上千款,涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时还有的服务,现场培训+课程,以及本地化服务。
尽管您不需要使用Stata进行编程,
但是它作为一个快速完成矩阵的编程
语言,是Stata功能中不可或缺的一部
分。Mata既是一个操作矩阵的互动环
境,也是一个完整开发环境,可以生
产编译和优化代码。它还包含了一些
功能来处理面板数据、执行真实
或复制的矩阵运算,提供完整的支持
面向对象的编程,并完全兼容Stata。

讲座主题:因果推断: 内生性问题与工具变量法
讲座时间:5月19日15:00-16:00
讲座概述:因果推断模型与方法是现代社会科学研究者利用计量模型发表高水平实证论文的核心利器。其中,工具变量法则举足轻重,是计量研究中无法避开的挑战之一。此专题就内生性问题与解决路径、工具变量选择的方法及分类、工具变量的检验及工具变量回归模型(2SLS+GMM)等进行专题讨论,探讨工具变量法的基本思想、原理、模型、方法及适用范围,并以真实数据为演示案例,分享因果推断的思辨、工具变量回归模型的构建、应用及结果解读的路径,为发表高水平的实证研究论文奠定基础。

We used a beta prior distribution in this example, but we could have chosen another prior distribution
that supports our prior knowledge. For the final analysis, it is important to consider a range of different
prior distributions and investigate the sensitivity of the results to the chosen priors.
For more details about this example, see Hoff (2009). Also see Beta-binomial model in
[BAYES] bayesmh for how to fit this model using bayesmh.
Bayesian versus frequentist analysis, or why Bayesian analysis?
Why use Bayesian analysis? Perhaps a better question is when to use Bayesian analysis and when
to use frequentist analysis. The answer to this question mainly lies in your research problem. You
should choose an analysis that answers your specific research questions. For example, if you are
interested in estimating the probability that the parameter of interest belongs to some prespecified
interval, you will need the Bayesian framework, because this probability cannot be estimated within
the frequentist framework. If you are interested in a repeated-sampling inference about your parameter,
the frequentist framework provides that.

Posterior / Likelihood Prior
If the posterior distribution can be derived in a closed form, we may proceed directly to the
inference stage of Bayesian analysis. Unfortunately, except for some special models, the posterior
distribution is rarely available explicitly and needs to be estimated via simulations. MCMC sampling
can be used to simulate potentially very complex posterior models with an arbitrary level of precision.
MCMC methods for simulating Bayesian models are often demanding in terms of specifying an efficient
sampling algorithm and verifying the convergence of the algorithm to the desired posterior distribution.
Inference is the next step of Bayesian analysis. If MCMC sampling is used for approximating the
posterior distribution, the convergence of MCMC must be established before proceeding to inference.
Point and interval estimators are either derived from the theoretical posterior distribution or estimated
from a sample simulated from the posterior distribution. Many Bayesian estimators, such as posterior
科学软件网不定期举办各类公益培训和讲座,让您有更多机会免费学习和熟悉软件。
http://turntech8843.b2b168.com