使用期限租赁或*
许可形式单机和网络版
原产地美国
介质下载
适用平台window,mac,linux
科学软件网专注提供科研软件。截止目前,共代理千余款,软件涵盖各个学科。除了软件,科学软件网还提供课程,包含34款软件,66门课程。热门软件有:spss,stata,gams,sas,minitab,matlab,mathematica,lingo,hydrus,gms,pscad,mplus,tableau,eviews,nvivo,gtap,sequncher,simca等等。
2019年6月Stata 15正式发布。这是Stata有史以来大的一次版本更新。我们贴出了Statalist并且列出了16项重要的新功能。这篇文章会重点谈谈这些新功能:
扩展回归模型
潜在类别分析(LCA)
贝叶斯前缀指令
线性动态随机一般均衡(DSGE)模型
web 的动态Markdown文档
非线性混合效应模型
空间自回归模型(SAR)
区间删失参数生存时间模型
有限混合模型(FMMs)
混合Logit模型
非参数回归
聚类随机设计和回归模型的功率分析
Word和PDF文档
图形颜色透明度/不透明度
ICD-10-CM/PCS支持
联邦储备经济数据(FRED)支持
其他
上面列出的十六功能当然是重要的, 但还有其他值得一提的。比较*想到的是:
. 贝叶斯多级模型
. 门限回归
. 具有随机系数的面板数据tobit
. 区间测量结果的多层回归
. 删失结果的多级Tobit回归
. 面板数据的协整测试
. 时间序列中多断点的测试
. 多组广义 SEM
. 异方差的线性回归
. Heckman风格的样本选择Poisson模型
. 具有随机系数的面板数据非线性模型
. 贝叶斯面板数据模型
. 随机系数的面板数据区间回归
. SVG的导出
. 贝叶斯生存模型
. 零膨胀有序概率
. 添加您自己的电源和样本大小的方法
. 贝叶斯样本选择模型
. 支持瑞典语
. 对DO文件编辑器的改进
. 流随机数生成器
. 对于java插件的改进
. Stata / MP更多的并行化

Posterior / Likelihood Prior
If the posterior distribution can be derived in a closed form, we may proceed directly to the
inference stage of Bayesian analysis. Unfortunately, except for some special models, the posterior
distribution is rarely available explicitly and needs to be estimated via simulations. MCMC sampling
can be used to simulate potentially very complex posterior models with an arbitrary level of precision.
MCMC methods for simulating Bayesian models are often demanding in terms of specifying an efficient
sampling algorithm and verifying the convergence of the algorithm to the desired posterior distribution.
Inference is the next step of Bayesian analysis. If MCMC sampling is used for approximating the
posterior distribution, the convergence of MCMC must be established before proceeding to inference.
Point and interval estimators are either derived from the theoretical posterior distribution or estimated
from a sample simulated from the posterior distribution. Many Bayesian estimators, such as posterior

mean and posterior standard deviation, involve integration. If the integration cannot be performed
analytically to obtain a closed-form solution, sampling techniques such as Monte Carlo integration
and MCMC and numerical integration are commonly used.
Bayesian hypothesis testing can take two forms, which we refer to as interval-hypothesis testing
and model-hypothesis testing. In an interval-hypothesis testing, the probability that a parameter or
a set of parameters belongs to a particular interval or intervals is computed. In model hypothesis
testing, the probability of a Bayesian model of interest given the observed data is computed.
Model comparison is another common step of Bayesian analysis. The Bayesian framework provides
a systematic and consistent approach to model comparison using the notion of posterior odds and
related to them Bayes factors. See [BAYES] bayesstats ic for details.
Finally, prediction of some future unobserved data may also be of interest in Bayesian analysis.
The prediction of a new data point is performed conditional on the observed data using the so-called
posterior predictive distribution, which involves integrating out all parameters from the model with
respect to their posterior distribution. Again, Monte Carlo integration is often the only feasible option
for obtaining predictions. Prediction can also be helpful in estimating the goodness of fit of a model.

Building a reliable Bayesian model requires extensive experience from the researchers, which leads
to the second difficulty in Bayesian analysis—setting up a Bayesian model and performing analysis
is a demanding and involving task. This is true, however, to an extent for any statistical modeling
procedure.
Lastly, one of the main disadvantages of Bayesian analysis is the computational cost. As a rule,
Bayesian analysis involves intractable integrals that can only be computed using intensive numerical
methods. Most of these methods such as MCMC are stochastic by nature and do not comply with
the natural expectation from a user of obtaining deterministic results. Using simulation methods does
not compromise the discussed advantages of Bayesian approach, but unquestionably adds to the
complexity of its application in practice.
科学软件网专注提供正版软件,跟上百家软件开发商有紧密合作,价格优惠,的和培训服务。
http://turntech8843.b2b168.com