使用期限租赁或*
许可形式单机和网络版
原产地美国
介质下载
适用平台window,mac,linux
科学软件网提供的软件覆盖各个学科,软件数量达1000余款,满足各高校和企事业单位的科研需求。此外,科学软件网还提供软件培训和研讨会服务,目前视频课程达68门,涵盖34款软件。
出版质量的图形
Stata轻松生成出版质量、风格迥异的图形。您可以编写脚本并以可复制的方式生成成百上千个图形,并且可以以EPS
或TIF格式输出打印、以PNG格式或SVG格式输出放到网上、或PDF格式输出预览。使用这个图形编辑器可更改图形的任何
方面,或添加标题、注释、横线、箭头和文本。

2019年6月Stata 15正式发布。这是Stata有史以来大的一次版本更新。我们贴出了Statalist并且列出了16项重要的新功能。这篇文章会重点谈谈这些新功能:
扩展回归模型
潜在类别分析(LCA)
贝叶斯前缀指令
线性动态随机一般均衡(DSGE)模型
web 的动态Markdown文档
非线性混合效应模型
空间自回归模型(SAR)
区间删失参数生存时间模型
有限混合模型(FMMs)
混合Logit模型
非参数回归
聚类随机设计和回归模型的功率分析
Word和PDF文档
图形颜色透明度/不透明度
ICD-10-CM/PCS支持
联邦储备经济数据(FRED)支持
其他
上面列出的十六功能当然是重要的, 但还有其他值得一提的。比较*想到的是:
. 贝叶斯多级模型
. 门限回归
. 具有随机系数的面板数据tobit
. 区间测量结果的多层回归
. 删失结果的多级Tobit回归
. 面板数据的协整测试
. 时间序列中多断点的测试
. 多组广义 SEM
. 异方差的线性回归
. Heckman风格的样本选择Poisson模型
. 具有随机系数的面板数据非线性模型
. 贝叶斯面板数据模型
. 随机系数的面板数据区间回归
. SVG的导出
. 贝叶斯生存模型
. 零膨胀有序概率
. 添加您自己的电源和样本大小的方法
. 贝叶斯样本选择模型
. 支持瑞典语
. 对DO文件编辑器的改进
. 流随机数生成器
. 对于java插件的改进
. Stata / MP更多的并行化

mean and posterior standard deviation, involve integration. If the integration cannot be performed
analytically to obtain a closed-form solution, sampling techniques such as Monte Carlo integration
and MCMC and numerical integration are commonly used.
Bayesian hypothesis testing can take two forms, which we refer to as interval-hypothesis testing
and model-hypothesis testing. In an interval-hypothesis testing, the probability that a parameter or
a set of parameters belongs to a particular interval or intervals is computed. In model hypothesis
testing, the probability of a Bayesian model of interest given the observed data is computed.
Model comparison is another common step of Bayesian analysis. The Bayesian framework provides
a systematic and consistent approach to model comparison using the notion of posterior odds and
related to them Bayes factors. See [BAYES] bayesstats ic for details.
Finally, prediction of some future unobserved data may also be of interest in Bayesian analysis.
The prediction of a new data point is performed conditional on the observed data using the so-called
posterior predictive distribution, which involves integrating out all parameters from the model with
respect to their posterior distribution. Again, Monte Carlo integration is often the only feasible option
for obtaining predictions. Prediction can also be helpful in estimating the goodness of fit of a model.

In Stata 16, we introduce a new, unified suite of commands for modeling choice data. We have added new commands for summarizing choice data. We renamed and improved existing commands for fitting choice models. We even added a new command for fitting mixed logit models for panel data. And we document them together in the new Choice Models Reference Manual.
And here’s the best part: margins now works after fitting choice models. This means you can now easily interpret the results of your choice models. While the coefficients estimated in choice models are often almost uninterpretable, margins allows you to ask and answer very specific questions based on your results. Say that you are modeling choice of transportation. You can answer questions such as
• What proportion of travelers are expected to choose air travel?
• How does the probability of traveling by car change for each additional $10,000 in income?
• If wait times at the airport increase by 30 minutes, how does this affect the choice of each mode of transportation?
What else is new? You now cmset your data before fitting a choice model. For instance,
. cmset personid transportmethod
Then, you use cmsummarize, cmchoiceset, cmtab, and cmsample to explore, summarize, and look for potential problems in your data.
And you use cm estimation commands to fit one of the following choice models:
• cmclogit conditional logit (McFadden’s choice) model
• cmmixlogit mixed logit model
• cmxtmixlogit panel-data mixed logit model
• cmmprobit multinomial probit model
• cmroprobit rank-ordered probit model
• cmrologit rank-ordered logit model
Unlike the others, cmxtmixlogit is not renamed and improved. It is completely new in Stata 16, and
2020年,北京天演融智软件有限公司申请高等教育司产学合作协同育人项目,“大数据”和“机器学习”师资培训项目,以及基于OBE的教考分离改革与教学评测项目已获得批准。我们将会跟更多的高校合作,产学融合协同育人。
http://turntech8843.b2b168.com