使用期限*
许可形式单机
原产地美国
介质下载
适用平台windows
科学软件网专注提供科研软件。截止目前,共代理千余款,软件涵盖各个学科。除了软件,科学软件网还提供课程,包含34款软件,66门课程。热门软件有:spss,stata,gams,sas,minitab,matlab,mathematica,lingo,hydrus,gms,pscad,mplus,tableau,eviews,nvivo,gtap,sequncher,simca等等。
LISREL结构方程模型软件
SSI创建于1971年,旨在应用统计理论,开发新的统计软件和完善已有的统计软件。产品被广泛应用于统计、社会科学、医药健康、教育、经济、工商管理、市场、环境科学、工程以及其他研究领域。每年,通过应用SSI软件得出的结果而在国际性刊物上发表的不计其数。
LISREL被公认为为的结构方程建模 (Structural Equation Modeling, 简称 SEM) 分析工具。通过运用路径图 (Path Diagram,又称通径图)直观地构造结构模型是LISREL的一个重要特点。在LISREL中,新增了多层次分析(Multilevel Modeling) 、广义线性模型 (Generalized Linear Regression, 又称通用线性模型)。
在过去的四十五年中,LISREL模型、方法和软件已成为结构方程模型(SEM)的同义词。SEM使社会科学、管理科学、行为科学、生物科学、教育科学等领域的研究人员对他们的理论进行了实证评估。这些理论通常归结为两种理论模型,可观测变量和不可观测变量。如果为理论模型的观测变量收集数据,那么LISREL可以用来将模型拟合为数据。
During the last forty five years, the LISREL model, methods and software have become synonymous with structural equation modeling (SEM). SEM allows researchers in the social sciences, management sciences, behavioral sciences, biological sciences, educational sciences and other fields to empirically assess their theories. These theories are usually formulated as theoretical models for observed and latent (unobservable) variables. If data are collected for the observed variables of the theoretical model, the LISREL program can be used to fit the model to the data.
Today, however, LISREL is no longer limited to SEM. LISREL 10 includes the 64-bit statistical applications LISREL, PRELIS, MULTILEV, SURVEYGLIM and MAPGLIM.
Group denotes the type of respondent (1 for weightlifter; 2 for student and 3 for marathon
athlete).
• Age denotes the age of the respondent in years.
• Len denotes the height of the respondent in cm.
• Mass denotes the weight of the respondent in kg.
• %Fat denotes the percentage fat of the respondent.
• Strength denotes the breast strength of the respondent in lb.
• Trigl denotes the triglycerides of the respondent.
• Cholest denotes the total cholesterol level of the respondent.
• The specific data set is provided as FITCHOL.LSF in the TUTORIAL folder.
• The first portion of FITCHOL.LSF is shown in the following LSF window.
. Introduction
In practice, many multivariate data sets contain missing values. These missing values may result from nonresponses in a survey, absenteeism of participants in a longitudinal study, etc. The traditional way of dealing
with these missing data values is to use list wise deletion to generate a data set that only contains the complete
data cases. However, list wise deletion may result in a very small data set. It is a well-known fact that most
multivariate statistical methods require a large sample size, especially if the number of observed variables is
large. Consequently, alternative statistical methods for dealing with data with missing values are of interest.
Multiple Imputation (MI) and Full Information Maximum Likelihood (FIML) estimation are two popular
statistical methods for dealing with data with missing values. Both these methods are available in LISREL
(Jöreskog & Sörbom 2003). The Multiple Imputation module of LISREL implements the Expected
Maximization (EM) algorithm and the Markov Chain Monte Carlo (MCMC) method for imputing missing
values in multivariate data sets. Technical details of these methods are available in Schafer (1997) and Du
Toit & Du Toit (2001). Supplementary notes on these methods are also provided by Du Toit & Mels (2002).
In this note, the Multiple Imputation and FIML methods for data with missing values of LISREL are illustrated
by fitting a measurement model to a multivariate data set consisting of the scores of a sample of girls on six
psychological tests. This data set is described in the next section. The measurement model is described in
section 3. Thereafter, the method of Multiple Imputation is used to fit the measurement model to the data set
for girls. In section 5, the measurement model is fitted to the girls’ data by means of the FIML method
LISREL结构方程模型软件
SSI创建于1971年,旨在应用统计理论,开发新的统计软件和完善已有的统计软件。产品被广泛应用于统计、社会科学、医药健康、教育、经济、工商管理、市场、环境科学、工程以及其他研究领域。每年,通过应用SSI软件得出的结果而在国际性刊物上发表的不计其数。
SURVEYGLIM
SURVEYGLIM拟合简单随机和复杂调查设计中的广义线性模型(GLIMs)到数据中。可用的抽样分布模型如下:
Multinomial
Bernoulli
Binomial
Negative Binomial
Poisson
Normal
Gamma
Inverse Gaussian
MAPGLIM
MAPGLIM执行 Maximum A Priori (MAP)法来拟合广义线性模型到多级数据中。
操作系统
LISREL软件只适用于Windows操作系统。
SURVEYGLIM is a 64-bit application that fits Generalized LInear Models (GLIMs) to data from simple random and complex survey designs. Models for the Multinomial, Bernoulli, Binomial, Negative Binomial, Poisson, Normal, Gamma, and Inverse Gaussian sampling distributions are available.
,专注,专心是科学软件网的服务宗旨,开发的软件、传递*的技术、提供贴心的服务是我们用实际行动践行的**目标,我们会为此目标而不懈努力。
http://turntech8843.b2b168.com