快速,简单并易于使用
点击式的界面和强大,直观的命令语言让Stata使用起来快速,精确并易于使用。
所有的分析结果都可以被复制和存档,并用来出版和审查。不管您什么时候写的内容,版本控制系统确保统计程序可
继续生成同样的结果。

Lasso is a machine-learning technique used for model selection, prediction, and inference.
The new lasso command selects “optimal” predictors for continuous, count, and binary outcomes using deviances from linear, Poisson, logit, or probit regression models.
For instance, if you type
. lasso linear y x1-x500
lasso will select a subset of the specified covariates—say, x2, x10, x11, and x21. You can then use the standard predict command to obtain predictions of y.
If you instead have a binary or count outcome, you can use lasso logit, lasso probit, or lasso poisson in the same way. And if you prefer to select variables using the elastic net or square-root lasso method, you can use the elasticnet or sqrtlasso command.
Sometimes, variable selection or prediction is the final goal of lasso. Other times, you are interested in estimating and testing coefficients. Stata 16 provides 11 commands that allow you to estimate coefficients, standard errors, and confidence intervals and to perform tests for variables of interest while using lasso methods to select from among potential control variables. The commands are
dsregress, dslogit, dspoisson, poregress, pologit, popoisson, poivpoisson, xporegress, xpologit,
xpopoisson, and xpoivregress.
The ds commands perform double-selection lasso, the po commands perform partialing-out lasso, and the xpo commands perform cross-fit partialing-out lasso. They do this for models with continuous, binary, and count outcomes. They can even handle endogenous covariates in models for continuous outcomes. The literature currently discusses many methods for lasso-based inference. We make some of these methods available so that researchers can select their favorite. In fact, there are even more lasso-based methods of inference in the literature, and often researchers may use the tools available in lasso, sqrtlasso, and elasticnet to implement other methods.
The lasso and elasticnet commands are standard lasso tools often requested for variable selection and prediction. The lasso tools for inference implement newer methods developed primarily by econometricians. However, these inference methods will be popular in all disciplines because they provide a method for testing and interpreting coefficients on variables of interest.
Users can easily learn all about the lasso features in the new Lasso Reference Manual.

Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。
新版本的STATA采用较具亲和力的窗口接口,使用者自行建立程序时,软件能提供具有直接命令式的语法。Stata提供完整的使用手册,包含统计样本建立、解释、模型与语法、文献等**过一万余页的出版品。
除此之外,Stata软件可以透过网络实时更新每天的较新功能,更可以得知世界各地的使用者对于STATA公司提出的问题与解决之道。使用者也可以透过Stata Journal获得许许多多的相关讯息以及书籍介绍等。另外一个获取庞大资源的管道就是Statalist,它是一个独立的listserver,每月交替提供使用者**过1000个讯息以及50个程序。
Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:
数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。
等级资料的一般分析:秩变换,秩和检验,秩相关等
相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
其他方法:质量控制,整群抽样的设计效率,诊断试验评价,kappa等。
科学软件网是一个以引进国外优秀科研软件,提供*软件服务的营业,由天演融智软件有限公司创办,旨在为国内高校、科研院所和以研发为主的企业事业单位提供优秀的科研软件及相关软件服务。截止目前,科学软件网已获得数百家国际**软件公司正式授权,代理销售科研软件达一千余种,软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供专业培训、视频课程(包含34款软件,64门课程)、实验室解决方案和项目咨询等服务。
不管您是需要购买单款软件,还是制定整个实验室的购买方案,都可以提供。

-/gjiiih/-
http://turntech8843.b2b168.com