Stata是一款完整的、集成的统计软件包,提供您需要的一切数据分析、数据管理和图形。
快速,简单并易于使用
点击式的界面和强大,直观的命令语言让Stata使用起来快速,精确并易于使用。
所有的分析结果都可以被复制和存档,并用来出版和审查。不管您什么时候写的内容,版本控制系统确保统计程序可继续生成同样的结果。
统计功能介绍
Stata使得大量的统计工具用于指尖
标准方法,如
基本表格和总结
案例对照分析
ARIMA
ANOVA 和MANOVA
线性回归
时间序列平滑
广义线性模型(GLM)
聚类分析
对比和比较
功率分析
样本选择
……
高级方法,如
当Stata执行您的分析或理解使用的方法时,Stata不会让您孤立无援或订购很多书籍来了解每个细节。
我们每一个数据管理功能都有完整的解释,并记录在案,并在实践中显示实际的例子。每一个估计都有完全记录,包含几个真实数据的例子,真正讨论如何解释结果。这些例子都给了数据,您可以直接在Stata中使用,甚至扩展您的分析。我们给您快速启动每一个功能,展示一些较常用用途。想要了解更多细节,我们的方法和公式部分提供了计算的细节,我们参考部分会给出更多信息。
Stata是一个很大的软件包,包含了非常多的文档,**过27卷14,000页的内容。不用担心,在Help菜单中输入要搜索的内容,Stata会搜索到关键词、指数,甚至用户编写的程序包,这些会让您得到想要了解的一切。Stata包含了所有这些您想要的内容。

值得信任
技术支持
我们不仅编写统计方法,我们还会进行验证。
您能从Stata estimator rest与其他估计的比较中看到Monte-Carlo模拟的一致性和覆盖率以及我们统计学家们进行的广
泛测试。每一版的Stata软件,我们都通过了各种认证,包括230万行的代码测试,并产生了430万行的结果输出。我们验
证了这430万行代码中的每一个数字和每一段文字。
Stata公司的技术团队对注册用户提供免费服务。而这远比您付的费用得到的更多。
我们有专门的Stata程序员和统计学家来回答您的技术问题。从棘手的数据管理方案到让您做出**的图表;从解释大
量的标准错误到指导您进行多层模型,我们都在认真回答您的问题。
系统要求
■ Stata for Windows
■ Stata for Mac
■ Stata for Linux
Windows 10* / Windows 8* / Windows 7* / Windows Vista* / Windows
Server 2016, 2012, 2008, 2003 * ;* 64-bit and 32-bit Windows varieties for
x86-64 and x86 processors made by Intel® and AMD Find out if your OS is
64-bit compliant.
Stata for macOS requires 64-bit Intel® processors (Core™2 Duo or better)
running macOS 10.9 or newer Find out if your OS is 64-bit compliant.
Any 64-bit (x86-64 or compatible) or 32-bit (x86 or compatible) running
Linux For xstata, you need to have GTK 2.24 installed

Stata 16 New in Bayesian analysis—Multiple chains, predictions, and more
Multiple chains.
Bayesian inference based on an MCMC (Markov chain Monte Carlo) sample is valid only if the Markov chain has converged. One way we can evaluate this convergence is to simulate and compare multiple chains.
The new nchains() option can be used with both the bayes: prefix and the bayesmh command. For instance, you type
. bayes, nchains(4): regress y x1 x2
and four chains will be produced. The chains will be combined to produce a more accurate final result. Before interpreting the result, however, you can compare the chains graphically to evaluate convergence. You can also evaluate convergence using the Gelman–Rubin convergence diagnostic that is now reported by bayes: regress and other Bayesian estimation commands when multiple chains are simulated. When you are concerned about noncovergence, you can investigate further using the bayesstats grubin command to obtain individual Gelman–Rubin diagnostics for each parameter in your model.
Bayesian predictions.
Bayesian predictions are simulated values from the posterior predictive distribution. These predictions are useful for checking model fit and for predicting out-of-sample observations. After you fit a model with bayesmh, you can use bayespredict to compute these simulated values or functions of them and save those in a new Stata dataset. For instance, you can type
. bayespredict (ymin:@min({_ysim})) (ymax:@max({_ysim})), saving(yminmax)
to compute minimums and maximums of the simulated values. You can then use other postestimation commands such as bayesgraph to obtain summaries of the predictions.
The dataset created by bayespredict may include thousands of simulated values for each observation in your dataset. Sometimes, you do not need all of these individual values. To instead obtain posterior summaries such as posterior means or medians, you can use bayespredict, pmean or bayespredict, pmedian. Alternatively, you may be interested in a random sample of the simulated values. You can use, for instance, bayesreps, nreps(100) to obtain 100 replicates.
Finally, you may want to evaluate model goodness of fit using posterior predictive p-values, also known as PPPs or as Bayesian predictive p-values. PPPs measure agreement between observed and replicated data and can be computed using the new bayesstats ppvalues command. For instance, using our earlier example
. bayesstats ppvalues {ymin} {ymax} using yminmax

-/gjiiih/-
http://turntech8843.b2b168.com