With MathWorks data acquisition products, you can access data from hardware such as data acquisition boards, test and measurement instruments, CAN bus interface devices, and imaging devices. You also have direct access to data from ODBC-compliant or JDBC-compliant databases, OPC servers, and several financial data servers.
MathWorks data acquisition products provide direct access to data to enable live visualization and analysis and streamline automation of repetitive tasks that require data from external sources.
![matlab软件实用教程](//l.b2b168.net/2019/07/29/10/20190729103943513724.jpg)
AI in Automotive Engineering
Use MATLAB to access and preprocess fleet and vehicle data, build machine learning and predictive models, and deploy models to enterprise IT systems. With MATLAB you can access data stored in files, databases, and the cloud. It helps in exploring modeling approaches using machine learning and deep learning apps and to accelerate algorithms with parallel processing on CPUs, NVIDIA® GPUs, the cloud, and datacenter resources. Automatic conversion of machine learning models to C/C++ code and deep learning models to CUDA® code helps in deployment of trained models or networks to production IT systems, without recoding into another language.
MathWorks is an AUTOSAR Premium Member and actively participates in the development of the standard with focus on the complete application of Model-Based Design with an AUTOSAR development process. Use Simulink and AUTOSAR Blockset™ to design and simulate Classic and Adaptive AUTOSAR systems. Then use Embedded Coder® to generate AUTOSAR code in C for Classic or C++ for Adaptive. Composition authoring with System Composer, as well as, round-trip ARXML-based integrations are supported.
![matlab软件实用教程](//l.b2b168.net/2018/11/24/13/201811241328462668194.jpg)
使用 MATLAB 实现机器学习
利用工程、生产和金融数据发现规律并构建预测模型
使用 MATLAB®,工程师和其他领域*部署了成千上万的应用程序,用于预测性维护、传感器分析、金融和通信电子。MATLAB 通过以下功能让机器学习的困难部分变得简单易行
点击式应用,可用于训练和比较模型
高级信号处理和特征提取技术
自动**参数调优和特征选择,可优化模型性能
能使用相同的代码规模处理大数据和集群
为嵌入式和高性能应用程序自动生成 C/C++ 代码
各种常用的分类、回归和聚类算法,用于监督式和无监督学习
对于大多数统计和机器学习计算,比开源工具执行速度更快
利用 MATLAB® tall 数组的强大功能和简易性,访问、探索和处理大数据及无法存入内存的数据(包括存储在 Spark™ 和 Hadoop® 上的数据)。
![matlab软件实用教程](//l.b2b168.net/2018/11/24/13/201811241328232094494.jpg)
-/gjiiih/-
http://turntech8843.b2b168.com