stata软件版本 教育用户享更多优惠
  • stata软件版本 教育用户享更多优惠
  • stata软件版本 教育用户享更多优惠
  • stata软件版本 教育用户享更多优惠

产品描述

Stata 数据管理统计绘图软件

快速,简单并易于使用
点击式的界面和强大,直观的命令语言让Stata使用起来快速,精确并易于使用。
所有的分析结果都可以被复制和存档,并用来出版和审查。不管您什么时候写的内容,版本控制系统确保统计程序可
继续生成同样的结果。

统计功能介绍
Stata使得大量的统计工具用于指尖
● 基本表格和总结
● 案例对照分析
● ARIMA
● ANOVA 和MANOVA
● 线性回归
● 时间序列平滑
● 多层模型
● 生存分析
● 动态面板数据回归
● 结构方程建模
● 二进制,计数和审查结果
● ARCH
■ 标准方法,如■ 高级方法,如
● 多重替代法
● 调查数据
● Treatment effects
● 精确统计
● 贝叶斯分析
● ……
stata软件版本
STATA 新功能
ERM=内生性+选择+处理
在连续、二元、有序和删剪结果中结合内源性变量、样本选择和模型的内源性处理


潜在类别分析(LCA)
发现并理解数据中未被观测到的组。使用LCA基于模型的分类功能找出分组
一共有多少个分组
这些分组中都有谁
这些分组有什么区别


叶斯:logistic和其他44种新功能
输入 bayes:45个Stata评估命令都可以用来拟合贝叶斯回归模型


完整的数据管理功能
Stata的数据管理功能让您控制所有类型的数据。
您可以重组数据,管理变量,并收集各组并重复统计。您可以处理字节,整数,long, float,double和字符串变量(包括BLOB和达到20亿个字符的字符串)。Stata还有一些高级的工具用来管理特殊的数据,如生存/时间数据、时间序列数据、面板/纵向数据、分类数据、多重替代数据和调查数据。


Stata轻松生成出版质量、风格迥异的图形。您可以编写脚本并以可复制的方式生成成百上千个图形,并且可以以EPS或TIF格式输出打印、以PNG格式或SVG格式输出放到网上、或PDF格式输出预览。使用这个图形编辑器可更改图形的任何方面,或添加标题、注释、横线、箭头和文本。
stata软件版本
Lasso is a machine-learning technique used for model selection, prediction, and inference.
The new lasso command selects “optimal” predictors for continuous, count, and binary outcomes using deviances from linear, Poisson, logit, or probit regression models.
For instance, if you type
. lasso linear y x1-x500
lasso will select a subset of the specified covariates—say, x2, x10, x11, and x21. You can then use the standard predict command to obtain predictions of y.
If you instead have a binary or count outcome, you can use lasso logit, lasso probit, or lasso poisson in the same way. And if you prefer to select variables using the elastic net or square-root lasso method, you can use the elasticnet or sqrtlasso command.
Sometimes, variable selection or prediction is the final goal of lasso. Other times, you are interested in estimating and testing coefficients. Stata 16 provides 11 commands that allow you to estimate coefficients, standard errors, and confidence intervals and to perform tests for variables of interest while using lasso methods to select from among potential control variables. The commands are
dsregress, dslogit, dspoisson, poregress, pologit, popoisson, poivpoisson, xporegress, xpologit,
xpopoisson, and xpoivregress.
The ds commands perform double-selection lasso, the po commands perform partialing-out lasso, and the xpo commands perform cross-fit partialing-out lasso. They do this for models with continuous, binary, and count outcomes. They can even handle endogenous covariates in models for continuous outcomes. The literature currently discusses many methods for lasso-based inference. We make some of these methods available so that researchers can select their favorite. In fact, there are even more lasso-based methods of inference in the literature, and often researchers may use the tools available in lasso, sqrtlasso, and elasticnet to implement other methods.
The lasso and elasticnet commands are standard lasso tools often requested for variable selection and prediction. The lasso tools for inference implement newer methods developed primarily by econometricians. However, these inference methods will be popular in all disciplines because they provide a method for testing and interpreting coefficients on variables of interest.
Users can easily learn all about the lasso features in the new Lasso Reference Manual.
stata软件版本
Stata 16 has a new suite of commands for performing meta-analysis. This suite lets you explore and combine the results from different studies. For instance, if you have collected results from 20 studies about the effect of a particular drug on blood pressure, you can summarize these studies and estimate the overall effect using meta-analysis.
The new meta suite is broad, but what sets it apart is its simplicity.
You can type, for instance,
. meta set effectsize stderr
to declare precomputed effect sizes or use meta esize to compute effects from summary data. With this, you can perform random-effects, fixed-effects, or common-effect meta-analysis.
To estimate an overall effect size and its confidence interval, obtain heterogeneity statistics, and more, you simply type
. meta summarize
And visualizing the results is as easy as typing
. meta forestplot
But the meta suite provides much more.
Meta-regression and subgroup analysis allow you to evaluate the heterogeneity of studies. These are available via meta regress and meta forestplot, subgroup() or meta summarize, subgroup().
You can investigate potential publication bias. Check visually for funnel-plot asymmetry using meta funnelplot; formally test for funnel-plot asymmetry using meta bias; and assess publication bias using the trim-and-fill method with meta trimfill.
You can even perform cumulative meta-analysis with meta summarize, cumulative().
All the meta-analysis features are documented in the new Meta-analysis Reference Manual.
-/gjiiih/-

http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3280800位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图