企业信息

    北京天演融智软件有限公司

  • 8
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2006
  • 公司地址: 北京市 海淀区 北京市海淀区上地东路35号院1号楼3层1-312-318、1-312-319
  • 姓名: 王经理
  • 认证: 手机未认证 身份证未认证 微信已绑定

    提供stata正版软件报价

  • 所属行业:IT 软件
  • 发布日期:2024-06-12
  • 阅读量:180
  • 价格:面议
  • 产品规格:不限
  • 产品数量:9999.00 套
  • 包装说明:不限
  • 发货地址:北京海淀  
  • 关键词:提供stata正版软件报价

    提供stata正版软件报价详细内容

    Stata 16 New in Bayesian analysis—Multiple chains, predictions, and more
    Multiple chains.
    Bayesian inference based on an MCMC (Markov chain Monte Carlo) sample is valid only if the Markov chain has converged. One way we can evaluate this convergence is to simulate and compare multiple chains.
    The new nchains() option can be used with both the bayes: prefix and the bayesmh command. For instance, you type
    . bayes, nchains(4): regress y x1 x2
    and four chains will be produced. The chains will be combined to produce a more accurate final result. Before interpreting the result, however, you can compare the chains graphically to evaluate convergence. You can also evaluate convergence using the Gelman–Rubin convergence diagnostic that is now reported by bayes: regress and other Bayesian estimation commands when multiple chains are simulated. When you are concerned about noncovergence, you can investigate further using the bayesstats grubin command to obtain individual Gelman–Rubin diagnostics for each parameter in your model.
    Bayesian predictions.
    Bayesian predictions are simulated values from the posterior predictive distribution. These predictions are useful for checking model fit and for predicting out-of-sample observations. After you fit a model with bayesmh, you can use bayespredict to compute these simulated values or functions of them and save those in a new Stata dataset. For instance, you can type
    . bayespredict (ymin:@min({_ysim})) (ymax:@max({_ysim})), saving(yminmax)
    to compute minimums and maximums of the simulated values. You can then use other postestimation commands such as bayesgraph to obtain summaries of the predictions.
    The dataset created by bayespredict may include thousands of simulated values for each observation in your dataset. Sometimes, you do not need all of these individual values. To instead obtain posterior summaries such as posterior means or medians, you can use bayespredict, pmean or bayespredict, pmedian. Alternatively, you may be interested in a random sample of the simulated values. You can use, for instance, bayesreps, nreps(100) to obtain 100 replicates.
    Finally, you may want to evaluate model goodness of fit using posterior predictive p-values, also known as PPPs or as Bayesian predictive p-values. PPPs measure agreement between observed and replicated data and can be computed using the new bayesstats ppvalues command. For instance, using our earlier example
    . bayesstats ppvalues {ymin} {ymax} using yminmax
    提供stata正版软件报价
    Stata 16 has a new suite of commands for performing meta-analysis. This suite lets you explore and combine the results from different studies. For instance, if you have collected results from 20 studies about the effect of a particular drug on blood pressure, you can summarize these studies and estimate the overall effect using meta-analysis.
    The new meta suite is broad, but what sets it apart is its simplicity.
    You can type, for instance,
    . meta set effectsize stderr
    to declare precomputed effect sizes or use meta esize to compute effects from summary data. With this, you can perform random-effects, fixed-effects, or common-effect meta-analysis.
    To estimate an overall effect size and its confidence interval, obtain heterogeneity statistics, and more, you simply type
    . meta summarize
    And visualizing the results is as easy as typing
    . meta forestplot
    But the meta suite provides much more.
    Meta-regression and subgroup analysis allow you to evaluate the heterogeneity of studies. These are available via meta regress and meta forestplot, subgroup() or meta summarize, subgroup().
    You can investigate potential publication bias. Check visually for funnel-plot asymmetry using meta funnelplot; formally test for funnel-plot asymmetry using meta bias; and assess publication bias using the trim-and-fill method with meta trimfill.
    You can even perform cumulative meta-analysis with meta summarize, cumulative().
    All the meta-analysis features are documented in the new Meta-analysis Reference Manual.
    提供stata正版软件报价
    Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。
    提供stata正版软件报价
    值得信任
    技术支持
    我们不仅编写统计方法,我们还会进行验证。
    您能从Stata estimator rest与其他估计的比较中看到Monte-Carlo模拟的一致性和覆盖率以及我们统计学家们进行的广
    泛测试。每一版的Stata软件,我们都通过了各种认证,包括230万行的代码测试,并产生了430万行的结果输出。我们验
    证了这430万行代码中的每一个数字和每一段文字。

    -/gjiiih/-

    http://turntech8843.b2b168.com
    欢迎来到北京天演融智软件有限公司网站, 具体地址是北京市海淀区北京市海淀区上地东路35号院1号楼3层1-312-318、1-312-319,老板是赵亚君。 主要经营北京天演融智软件有限公司(科学软件网)主营产品PSCAD, CYME, SPSSPRO, Stata, Matlab,GAMS,Hydrus,GMS,Visual Modflow 等各学科软件,科学软件网有20多年的软件销售经验,提供专业销售和培训服务,还有更多的增值服务。目前,科学软件网提供的软件有数百种,软件涵盖的领域包括,经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等各个学科。。 单位注册资金单位注册资金人民币 1000 - 5000 万元。 我们的产品优等,服务优质,您将会为选择我们而感到放心,我们将会为得到您认可而感到骄傲。