提供lisrel解决方案以及百科介绍
  • 提供lisrel解决方案以及百科介绍
  • 提供lisrel解决方案以及百科介绍
  • 提供lisrel解决方案以及百科介绍

产品描述

LISREL不仅能处理结构方程模型,还能用于其他统计应用中:
LISREL:结构方程模型
PRELIS:数据处理与基本统计分析
MULTILEV:分层线性和非线性建模
SURVEYGLIM:广义线性模型
MAPGLIM:多级数据的广义线性建模

LISREL可以用来处理
标准结构方程模型
多级结构方程模型

处理数据类型包括
分类和连续变量的完整和不完整的复杂调查数据
分类变量和连续变量的完全不完全随机样本数据

PRELIS
数据处理
数据转换
数据生成
计算矩阵
计算样本矩的渐近协方差矩阵
归责的匹配
多重估算
多元线性回归分析
Logistic回归
单变量多元删失回归

The term "ordinal" is applied to variables where the response measure of interest is measured in a series of ordered categories. Examples of such variables include Likert scales and psychiatric ratings of severity. Nominal and ordinal outcome models can be seen as generalizations of the binary outcome model. The ordinal model becomes important when the outcome variable is not dichotomous, or not truly continuous. If an ordinal outcome is analyzed within a continuous model, such a model can yield predicted values outside the range of the ordinal variable. As with binary data, some transformation or link function becomes necessary to prevent this from happening. The continuous model can also yield correlated residuals and regressors when applied to ordinal outcomes because the continuous model does not take the ceiling and floor effects of the ordinal outcome into account. This can then result in biased estimates of regression coefficients, and is most critical when the ordinal variable in question is highly skewed.
Extensive work on the development of methods for the analysis of ordinal response data has been undertaken by numerous researchers. These developments have focused on the extension of methods for dichotomous variables to ordinal response data, and have been mainly in terms of logistic and probit regression models. The proportional odds model is a common choice for the analysis of ordinal data. In LISREL 10, it is possible to fit both proportional and non-proportional odds models to verify the proportional odds assumption using a chi-square difference test. The reference guide “Models for proportional and non-proportional odds.pdf” contains examples and references and is accessible via the online Help menu.
提供lisrel解决方案以及百科介绍
PRELIS
数据处理
数据转换
数据生成
计算矩阵
计算样本矩的渐近协方差矩阵
归责的匹配
多重估算
多元线性回归分析
Logistic回归
单变量多元删失回归
ML和MINRES探索性因子分析
MULTILEV
MULTILEV拟合简单随机和复杂调查设计中的多级线性和非线性模型到多级数据。它允许具有连续和明确的响应变量的模型。
提供lisrel解决方案以及百科介绍
LISREL结构方程模型软件
SSI创建于1971年,旨在应用统计理论,开发新的统计软件和完善已有的统计软件。产品被广泛应用于统计、社会科学、医药健康、教育、经济、工商管理、市场、环境科学、工程以及其他研究领域。每年,通过应用SSI软件得出的结果而在国际性刊物上发表的论文不计其数。
LISREL被公认为较为专业的结构方程建模 (Structural Equation Modeling, 简称 SEM) 分析工具。通过运用路径图 (Path Diagram,又称通径图)直观地构造结构模型是LISREL的一个重要特点。在LISREL中,新增了多层次分析(Multilevel Modeling) 、广义线性模型 (Generalized Linear Regression, 又称通用线性模型)。
在过去的四十五年中,LISREL模型、方法和软件已成为结构方程模型(SEM)的同义词。SEM使社会科学、管理科学、行为科学、生物科学、教育科学等领域的研究人员对他们的理论进行了实证评估。这些理论通常归结为两种理论模型,可观测变量和不可观测变量。如果为理论模型的观测变量收集数据,那么LISREL可以用来将模型拟合为数据。

During the last forty five years, the LISREL model, methods and software have become synonymous with structural equation modeling (SEM). SEM allows researchers in the social sciences, management sciences, behavioral sciences, biological sciences, educational sciences and other fields to empirically assess their theories. These theories are usually formulated as theoretical models for observed and latent (unobservable) variables. If data are collected for the observed variables of the theoretical model, the LISREL program can be used to fit the model to the data.

Today, however, LISREL is no longer limited to SEM. LISREL 10 includes the 64-bit statistical applications LISREL, PRELIS, MULTILEV, SURVEYGLIM and MAPGLIM.
提供lisrel解决方案以及百科介绍
LISREL可以用来处理
标准结构方程模型
多级结构方程模型

处理数据类型包括
分类和连续变量的完整和不完整的复杂调查数据
分类变量和连续变量的完全不完全随机样本数据

PRELIS
数据处理
数据转换
数据生成
计算矩阵
计算样本矩的渐近协方差矩阵
归责的匹配
多重估算
多元线性回归分析
Logistic回归
单变量多元删失回归
ML和MINRES探索性因子分析
MULTILEV
MULTILEV拟合简单随机和复杂调查设计中的多级线性和非线性模型到多级数据。它允许具有连续和明确的响应变量的模型。

In practice, many multivariate data sets are observations from several groups. Examples of these groups are genders, languages, political parties, countries, faculties, colleges, schools, etc.

LISREL may be used to fit multiple group structural equation models to multiple group data. Traditional statistical methods such as Maximum Likelihood (ML), Robust Maximum Likelihood (RML), Weighted Least Squares (WLS), Diagonally Weighted Least Squares (DWLS), Generalized Least Squares (GLS) and Un-weighted Least Squares (ULS) are available for complete multiple group data while the Full Information Maximum Likelihood (FIML) method is available for incomplete multiple group data.

In previous versions of LISREL, the user was required to create separate data files for each group. Suppose that the groups to be analyzed consisted of data collected in eight countries, the implication is that eight datasets must to be created in order to fit a multiple group structural equation model.
-/gjiiih/-

http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3182003位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图