Multiple-group IRT models in Stata
IRT models explore the relationship between a latent (unobserved) trait and items that measure aspects of the trait. This often arises in standardized testing where the trait of interest is ability, such as mathematical ability. A set of items (test questions) is designed, and the responses measure this unobserved trait. Researchers in education, psychology, and health frequently fit IRT models.
Stata’s irt commands fit 1-, 2-, and 3-parameter logistic models. They also fit graded response, nominal response, partial credit, and rating scale models, and any combination of them. And after fitting a model, irtgraph graphs item-characteristic curves, test characteristic curves, item information functions, and test information functions.
New in Stata 16, the irt commands allow comparisons across groups. Take any of the existing irt commands, add a group(varname) option, and fit the corresponding multiple-group model. For instance, type
. irt 2pl item1-item10, group(female)
and fit a two-group 2PL model.
Group-specific means and variances of the latent trait will be estimated. Group-specific difficulty and discrimination parameters can also be estimated for one or more items. With constraints, you can specify exactly which parameters are allowed to vary and which parameters are constrained to be equal across groups.
You can even use likelihood-ratio tests to compare models with and without constraints to perform an IRT model-based test of differential item functioning.

Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。
Stata官方。Stata公司提供的Web resources,涵盖了大量相关网络资源;其FAQ则提供了各种常见问题的解答;Statalist则是一个类似于人大经济论坛的免费的讨论区。加入Statalist的方法很简单,你只需要发送邮件至Stata-maillist,邮件内容*任何称谓,只需写上“subscribe Statalist”的字样即可。接到确认信息后,你便成为一名Statalist的成员了。当然,即使不加入,你仍然可以浏览,但不能提问。
UCLA(加州大学洛杉矶分校提供的网络教程。该提供的Data Management、Graphics、Regression、Logistic Regression、Multilevel Modeling、Survey Data Analysis等模块都非常出色;其Web Books、Textbook Examples模块则非常细致地呈现了几十本非常流行的统计和计量教材的Stata实例;对于LaTeX感兴趣的朋友,则可以通过Stata Tools for LaTeX模块获得诸多有用的信息;在Graph examples模块中,则列举了四十余种图形的绘制方法;最后,在Classes and Seminars模块中,你可以在线观看数十个Stata教学视频。
Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:
数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。
等级资料的一般分析:秩变换,秩和检验,秩相关等
相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
其他方法:质量控制,整群抽样的设计效率,诊断试验评价, kappa等。
科学软件网是一个以引进国外优秀科研软件,提供*软件服务的营业,由天演融智软件有限公司创办,旨在为国内高校、科研院所和以研发为主的企业事业单位提供优秀的科研软件及相关软件服务。截止目前,科学软件网已获得数百家国际**软件公司正式授权,代理销售科研软件达一千余种,软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供专业培训、视频课程(包含34款软件,64门课程)、实验室解决方案和项目咨询等服务。
不管您是需要购买单款软件,还是制定整个实验室的购买方案,都可以提供。

Stata是一款完整的、集成的统计软件包,提供您需要的一切数据分析、数据管理和图形。
完整的数据管理功能
Stata的数据管理功能让您控制所有类型的数据。
您可以重组数据,管理变量,并收集各组并重复统计。您可以处理字节,整数,long, float,double和字符串变量(包括BLOB和达到20亿个字符的字符串)。Stata还有一些高级的工具用来管理特殊的数据,如生存/时间数据、时间序列数据、面板/纵向数据、分类数据、多重替代数据和调查数据。
Stata轻松生成出版质量、风格迥异的图形。您可以编写脚本并以可复制的方式生成成百上千个图形,并且可以以EPS或TIF格式输出打印、以PNG格式或SVG格式输出放到网上、或PDF格式输出预览。使用这个图形编辑器可更改图形的任何方面,或添加标题、注释、横线、箭头和文本。
使用Mata进行矩阵编程
Mata是一个成熟的编程语言,可编译您所输入的任何字节,并进行优化和准确执行。
尽管您不需要使用Stata进行编程,但是它作为一个快速完成矩阵的编程语言,是Stata功能中不可或缺的一部分。Mata既是一个操作矩阵的互动环境,也是一个完整开发环境,可以生产编译和优化代码。它还包含了一些特殊功能来处理面板数据、执行真实或复制的矩阵运算,提供完整的支持面向对象的编程,并完全兼容Stata。
跨平台兼容
Stata可在Windows,Mac和Linux/Unix电脑上运行,但是license不需要区分电脑系统。也就是说,如果您有一台Mac系统的电脑和一台Windows系统的电脑,您不需要2个license来运行Stata。您可以安装在任意支持的系统中安装Stata软件。Stata数据集、程序以及其他的数据*翻译就可以跨平台的共享。您还可以从其他的统计软件、电子报表和数据库中轻松而快速的导入数据。
科学软件网是一个以引进国外优秀科研软件,提供*软件服务的营业,由天演融智软件有限公司创办,旨在为国内高校、科研院所和以研发为主的企业事业单位提供优秀的科研软件及相关软件服务。截止目前,科学软件网已获得数百家国际**软件公司正式授权,代理销售科研软件达一千余种,软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供专业培训、视频课程(包含34款软件,64门课程)、实验室解决方案和项目咨询等服务。
不管您是需要购买单款软件,还是制定整个实验室的购买方案,都可以提供。

Multiple datasets in memory in Stata 16
You can now load multiple datasets into memory. You type
. use people
and people.dta is loaded into memory. Next, you type
. frame create counties
. frame counties: use counties
and you have two datasets in memory. people.dta is in the frame named default, and counties.dta is in the frame named counties. Your current frame is still default. Most Stata commands use the data in the current frame. For example, if you typed
. list
then people.dta will be listed. If you typed
. frame counties: list
then counties.dta will be listed. Or you could make counties the current frame by typing
. frame change counties
and list will now list the counties data.
Navigating frames is easy and so is linking them. Imagine that both datasets have a variable named countycode that identifies counties in the same way. Type
. frlink m:1 countycode, frame(counties)
and each person in the default frame is linked to a county in the counties frame. This means you can now use the frget command to copy variables from the counties frame to the current frame. Or you can use the frval() function to directly access the values of variables in the counties frame. For instance, if we have each individual’s income in the default frame and median county income in the counties frame, we can generate a new variable containing relative income by typing
. generate rel_income = income / frval(counties, median_income)
This is just the beginning. While this example uses only two frames, you can have up to 100 frames in memory at once, and you can have many links among those frames.
-/gjiiih/-
http://turntech8843.b2b168.com