8
科学软件网提供软件和培训服务已有19年,拥有丰富的经验,提供软件产品上千款,涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时还有专业的服务,现场培训+课程,以及本地化服务。
扩展功能
使用Mata进行矩阵编程
跨平台兼容
真正的文档
Stata的编程功能让开发者和用户
每天都可以添加各种新功能以便满足
现代研究者日益增加的功能需求。
Stata可在Windows,Mac和Linux
/Unix电脑上运行,但是license不需
要区分电脑系统。也就是说,如果您
有一台Mac系统的电脑和一台Windows
系统的电脑,您不需要2个license来
运行Stata。您可以安装在任意支持的
系统中安装Stata软件。Stata数据集、
程序以及其他的数据*翻译就可以
跨平台的共享。您还可以从其他的统
计软件、电子报表和数据库中轻松而
快速的导入数据。
当Stata执行您的分析或理解使用的方法时,Stata不会让您孤立无援或订购
很多书籍来了解每个细节。
我们每一个数据管理功能都有完整的解释,并记录在案,并在实践中显示
实际的例子。每一个估计都有完全记录,包含几个真实数据的例子,真正讨论
如何解释结果。这些例子都给了数据,您可以直接在Stata中使用,甚至扩展
您的分析。我们给您快速启动每一个功能,展示一些较常用用途。想要了解更
多细节,我们的方法和公式部分提供了计算的细节,我们参考部分会给出更多
信息。
Stata是一个很大的软件包,包含了非常多的文档,**过27卷14,000页的内
容。不用担心,在Help菜单中输入要搜索的内容,Stata会搜索到关键词、指
数,甚至用户编写的程序包,这些会让您得到想要了解的一切。Stata包含了所
有这些您想要的内容。
Mata是一个成熟的编程语言,可
编译您所输入的任何字节,并进行优
化和准确执行。
Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。
Stata官方。Stata公司提供的Web resources,涵盖了大量相关网络资源;其FAQ则提供了各种常见问题的解答;Statalist则是一个类似于人大经济论坛的免费的讨论区。加入Statalist的方法很简单,你只需要发送邮件至Stata-maillist,邮件内容*任何称谓,只需写上“subscribe Statalist”的字样即可。接到确认信息后,你便成为一名Statalist的成员了。当然,即使不加入,你仍然可以浏览,但不能提问。
UCLA(加州大学洛杉矶分校提供的网络教程。该提供的Data Management、Graphics、Regression、Logistic Regression、Multilevel Modeling、Survey Data Analysis等模块都非常出色;其Web Books、Textbook Examples模块则非常细致地呈现了几十本非常流行的统计和计量教材的Stata实例;对于LaTeX感兴趣的朋友,则可以通过Stata Tools for LaTeX模块获得诸多有用的信息;在Graph examples模块中,则列举了四十余种图形的绘制方法;最后,在Classes and Seminars模块中,你可以在线观看数十个Stata教学视频。
Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:
数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。
等级资料的一般分析:秩变换,秩和检验,秩相关等
相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
其他方法:质量控制,整群抽样的设计效率,诊断试验评价, kappa等。
科学软件网是一个以引进国外优秀科研软件,提供*软件服务的营业,由天演融智软件有限公司创办,旨在为国内高校、科研院所和以研发为主的企业事业单位提供优秀的科研软件及相关软件服务。截止目前,科学软件网已获得数百家国际**软件公司正式授权,代理销售科研软件达一千余种,软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供专业培训、视频课程(包含34款软件,64门课程)、实验室解决方案和项目咨询等服务。
不管您是需要购买单款软件,还是制定整个实验室的购买方案,都可以提供。
2019年6月Stata 15正式发布。这是Stata有史以来较大的一次版本更新。我们贴出了Statalist并且列出了16项较重要的新功能。这篇文章会重点谈谈这些新功能:
扩展回归模型
潜在类别分析(LCA)
贝叶斯前缀指令
线性动态随机一般均衡(DSGE)模型
web 的动态Markdown文档
非线性混合效应模型
空间自回归模型(SAR)
区间删失参数生存时间模型
有限混合模型(FMMs)
混合Logit模型
非参数回归
聚类随机设计和回归模型的功率分析
Word和PDF文档
图形颜色透明度/不透明度
ICD-10-CM/PCS支持
联邦储备经济数据(FRED)支持
其他
上面列出的十六功能当然是重要的, 但还有其他值得一提的。比较*想到的是:
. 贝叶斯多级模型
. 门限回归
. 具有随机系数的面板数据tobit
. 区间测量结果的多层回归
. 删失结果的多级Tobit回归
. 面板数据的协整测试
. 时间序列中多断点的测试
. 多组广义 SEM
. 异方差的线性回归
. Heckman风格的样本选择Poisson模型
. 具有随机系数的面板数据非线性模型
. 贝叶斯面板数据模型
. 随机系数的面板数据区间回归
. SVG的导出
. 贝叶斯生存模型
. 零膨胀有序概率
. 添加您自己的电源和样本大小的方法
. 贝叶斯样本选择模型
. 支持瑞典语
. 对DO文件编辑器的改进
. 流随机数生成器
. 对于java插件的改进
. Stata / MP更多的并行化
Stata 16 has a new suite of commands for performing meta-analysis. This suite lets you explore and combine the results from different studies. For instance, if you have collected results from 20 studies about the effect of a particular drug on blood pressure, you can summarize these studies and estimate the overall effect using meta-analysis.
The new meta suite is broad, but what sets it apart is its simplicity.
You can type, for instance,
. meta set effectsize stderr
to declare precomputed effect sizes or use meta esize to compute effects from summary data. With this, you can perform random-effects, fixed-effects, or common-effect meta-analysis.
To estimate an overall effect size and its confidence interval, obtain heterogeneity statistics, and more, you simply type
. meta summarize
And visualizing the results is as easy as typing
. meta forestplot
But the meta suite provides much more.
Meta-regression and subgroup analysis allow you to evaluate the heterogeneity of studies. These are available via meta regress and meta forestplot, subgroup() or meta summarize, subgroup().
You can investigate potential publication bias. Check visually for funnel-plot asymmetry using meta funnelplot; formally test for funnel-plot asymmetry using meta bias; and assess publication bias using the trim-and-fill method with meta trimfill.
You can even perform cumulative meta-analysis with meta summarize, cumulative().
All the meta-analysis features are documented in the new Meta-analysis Reference Manual.