stata和spss的区别
  • stata和spss的区别
  • stata和spss的区别
  • stata和spss的区别

产品描述

使用期限租赁或* 许可形式单机和网络版 原产地美国 介质下载 适用平台window,mac,linux
科学软件网销售软件达19年,有丰富的销售经验以及客户资源,提供的产品涵盖各个学科,包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。此外,我们还提供很多附加服务,如:现场培训、课程、解决方案、咨询服务等。
Stata 是一套提供其使用者数据分析、数据管理以及绘制图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。
新版本的STATA采用具亲和力的窗口接口,使用者自行建立程序时,软件能提供具有直接命令式的语法。Stata提供完整的使用手册,包含统计样本建立、解释、模型与语法、文献等**过一万余页的出版品。
除此之外,Stata软件可以透过网络实时更新每天的新功能,更可以得知世界各地的使用者对于STATA公司提出的问题与解决之道。使用者也可以透过Stata Journal获得许许多多的相关讯息以及书籍介绍等。另外一个获取庞大资源的管道就是Statalist,它是一个立的listserver,每月交替提供使用者**过1000个讯息以及50个程序。
Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:
数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。
分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。
等级资料的一般分析:秩变换,秩和检验,秩相关等
相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。
其他方法:质量控制,整群抽样的设计效率,诊断试验评价,kappa等。
科学软件网是一个以引进国外科研软件,提供软件服务的营业,由天演融智软件有限公司创办,旨在为国内高校、科研院所和以研发为主的企业事业单位提供的科研软件及相关软件服务。截止目前,科学软件网已获得数百家国际软件公司正式授权,代理销售科研软件达一千余种,软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供培训、视频课程(包含34款软件,64门课程)、实验室解决方案和项目咨询等服务。


不管您是需要购买单款软件,还是制定整个实验室的购买方案,都可以提供。
stata和spss的区别
Stata 是一套提供其使用者数据分析、数据管理以及绘制图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。用Stata绘制的统计图形相当精美。
stata和spss的区别
Stata 数据管理统计绘图软件

快速,简单并易于使用
点击式的界面和强大,直观的命令语言让Stata使用起来快速,并易于使用。
所有的分析结果都可以被复制和存档,并用来出版和审查。不管您什么时候写的内容,版本控制系统确保统计程序可
继续生成同样的结果。

统计功能介绍
Stata使得大量的统计工具用于指尖
● 基本表格和总结
● 案例对照分析
● ARIMA
● ANOVA 和MANOVA
● 线性回归
● 时间序列平滑
● 多层模型
● 生存分析
● 动态面板数据回归
● 结构方程建模
● 二进制,计数和审查结果
● ARCH
■ 标准方法,如■ 方法,如
● 多重替代法
● 调查数据
● Treatment effects
● 统计
● 贝叶斯分析
● ……
stata和spss的区别
Frequentist inference is based on the sampling distributions of estimators of parameters and provides
parameter point estimates and their standard errors as well as confidence intervals. The exact sampling
distributions are rarely known and are often approximated by a large-sample normal distribution.
Bayesian inference is based on the posterior distribution of the parameters and provides summaries of
this distribution including posterior means and their MCMC standard errors (MCSE) as well as credible
intervals. Although exact posterior distributions are known only in a number of cases, general posterior
distributions can be estimated via, for example, Markov chain Monte Carlo (MCMC) sampling without
any large-sample approximation.
Frequentist confidence intervals do not have straightforward probabilistic interpretations as do
Bayesian credible intervals. For example, the interpretation of a 95% confidence interval is that if
we repeat the same experiment many times and compute confidence intervals for each experiment,
then 95% of those intervals will contain the true value of the parameter. For any given confidence
interval, the probability that the true value is in that interval is either zero or one, and we do not
know which. We may only infer that any given confidence interval provides a plausible range for the
true value of the parameter. A 95% Bayesian credible interval, on the other hand, provides a range
for a parameter such that the probability that the parameter lies in that range is 95%.
19年来,公司始终秉承、专注、专心的发展理念,厚积薄发,积累了大量的人才、技术以及行业经验,在行业内得到了大量用户的认可和高度价。
http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3282326位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图