使用期限租赁或*
许可形式单机和网络版
原产地美国
介质下载
适用平台window,mac,linux
科学软件网提供的软件上千款,涉及所有学科领域,您所需的软件,我们都能提供。科学软件网提供的软件涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时,还提供培训、课程(包含34款软件,66门课程)、实验室解决方案和项目咨询等服务。
Stata 16 Feature highlights:
1. Lasso
2. Reporting
3. Meta-analysis
4. Choice models
5. Python integration
6. New in Bayesian analysis—Multiple chains, predictions, and more
7. Panel-data ERMs
8. Import data from SAS and SPSS
9. Nonparametric series regression
10. Multiple datasets in memory
11. Sample-size analysis for confidence intervals
12. Nonlinear DSGE models
13. Multiple-group IRT models
14. xtheckman
15. Multiple-dose pharmacokinetic modeling
16. Heteroskedastic ordered probit models
17. Graph sizes in printer points, centimeters, and inches
18. Numerical integration
19. Linear programming
20. Stata in Korean
21. Mac interface now supports Dark Mode and native tabbed windows
22. Do-file Editor—Autocompletion and more syntax highlighting

summarize displays the mean and standard deviation of a variable across observations; program
writers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize).
egen’s rowmean() function creates the means of observations across variables. rowmedian() creates
the medians of observations across variables. rowpctile() returns the #th percentile of the variables
specified in varlist. rowsd() creates the standard deviations of observations across variables.
rownonmiss() creates a count of the number of nonmissing observations, the denominator of the
rowmean() calculation

As a quick introduction to Bayesian analysis, we use an example, described in Hoff (2009, 3),
of estimating the prevalence of a rare infectious disease in a small city. A small random sample of
20 subjects from the city will be checked for infection. The parameter of interest 2 [0; 1] is the
fraction of infected individuals in the city. Outcome y records the number of infected individuals in
the sample. A reasonable sampling model for y is a binomial model: yj Binomial(20; ). Based
on the studies from other comparable cities, the infection rate ranged between 0.05 and 0.20, with
an average prevalence of 0.10. To use this information, we must conduct Bayesian analysis. This
information can be incorporated into a Bayesian model with a prior distribution for , which assigns
a large probability between 0.05 and 0.20, with the expected value of close to 0.10. One potential
prior that satisfies this condition is a Beta(2; 20) prior with the expected value of 2=(2+20) = 0.09.
So, let’s assume this prior for the infection rate , that is, Beta(2; 20). We sample individuals
and observe none who have an infection, that is, y = 0. This value is not that uncommon for a small
sample and a rare disease. For example, for a true rate = 0.05, the probability of observing 0
infections in a sample of 20 individuals is about 36% according to the binomial distribution. So, our
Bayesian model can be defined as follows:

Multiple-group IRT models in Stata
IRT models explore the relationship between a latent (unobserved) trait and items that measure aspects of the trait. This often arises in standardized testing where the trait of interest is ability, such as mathematical ability. A set of items (test questions) is designed, and the responses measure this unobserved trait. Researchers in education, psychology, and health frequently fit IRT models.
Stata’s irt commands fit 1-, 2-, and 3-parameter logistic models. They also fit graded response, nominal response, partial credit, and rating scale models, and any combination of them. And after fitting a model, irtgraph graphs item-characteristic curves, test characteristic curves, item information functions, and test information functions.
New in Stata 16, the irt commands allow comparisons across groups. Take any of the existing irt commands, add a group(varname) option, and fit the corresponding multiple-group model. For instance, type
. irt 2pl item1-item10, group(female)
and fit a two-group 2PL model.
Group-specific means and variances of the latent trait will be estimated. Group-specific difficulty and discrimination parameters can also be estimated for one or more items. With constraints, you can specify exactly which parameters are allowed to vary and which parameters are constrained to be equal across groups.
You can even use likelihood-ratio tests to compare models with and without constraints to perform an IRT model-based test of differential item functioning.
科学软件网不仅提供软件产品,更有多项附加服务免费提供,让您售后**!
http://turntech8843.b2b168.com