使用期限租赁或*
许可形式单机和网络版
原产地美国
介质下载
适用平台window,mac,linux
科学软件网提供大量正版科学软件,满足各学科的科研要求。科学软件网专注软件销售服务已达19年,全国大部分高校和企事业单位都是我们的客户。同时,我们还提供本地化服务,助力中国的科研事业。
Finally, as we briefly mentioned earlier, the estimation precision in Bayesian analysis is not limited
by the sample size—Bayesian simulation methods may provide an arbitrary degree of precision.
Despite the conceptual and methodological advantages of the Bayesian approach, its application in
practice is still considered controversial sometimes. There are two main reasons for this—the presumed
subjectivity in specifying prior information and the computational challenges in implementing Bayesian
methods. Along with the objectivity that comes from the data, the Bayesian approach uses potentially
subjective prior distribution. That is, different individuals may specify different prior distributions.
Proponents of frequentist statistics argue that for this reason, Bayesian methods lack objectivity and
should be avoided. Indeed, there are settings such as clinical trial cases when the researchers want to
minimize a potential bias coming from preexisting beliefs and achieve more objective conclusions.
Even in such cases, however, a balanced and reliable Bayesian approach is possible. The trend in
using noninformative priors in Bayesian models is an attempt to address the issue of subjectivity. On
the other hand, some Bayesian proponents argue that the classical methods of statistical inference
have built-in subjectivity such as a choice for a sampling procedure, whereas the subjectivity is made
explicit in Bayesian analysis.

Bayesian and frequentist approaches have very different philosophies about what is considered fixed
and, therefore, have very different interpretations of the results. The Bayesian approach assumes that
the observed data sample is fixed and that model parameters are random. The posterior distribution
of parameters is estimated based on the observed data and the prior distribution of parameters and is
used for inference. The frequentist approach assumes that the observed data are a repeatable random
sample and that parameters are unknown but fixed and constant across the repeated samples. The
inference is based on the sampling distribution of the data or of the data characteristics (statistics). In
other words, Bayesian analysis answers questions based on the distribution of parameters conditional
on the observed sample, whereas frequentist analysis answers questions based on the distribution of
statistics obtained from repeated hypothetical samples, which would be generated by the same process
that produced the observed sample given that parameters are unknown but fixed. Frequentist analysis
consequently requires that the process that generated the observed data is repeatable. This assumption
may not always be feasible. For example, in meta-analysis, where the observed sample represents the
collected studies of interest, one may argue that the collection of studies is a one-time experiment.

值得信任
技术支持
我们不仅编写统计方法,我们还会进行验证。
您能从Stata estimator rest与其他估计的比较中看到Monte-Carlo模拟的一致性和覆盖率以及我们统计学家们进行的广
泛测试。每一版的Stata软件,我们都通过了各种认证,包括230万行的代码测试,并产生了430万行的结果输出。我们验
证了这430万行代码中的每一个数字和每一段文字。

Multiple-group IRT models in Stata
IRT models explore the relationship between a latent (unobserved) trait and items that measure aspects of the trait. This often arises in standardized testing where the trait of interest is ability, such as mathematical ability. A set of items (test questions) is designed, and the responses measure this unobserved trait. Researchers in education, psychology, and health frequently fit IRT models.
Stata’s irt commands fit 1-, 2-, and 3-parameter logistic models. They also fit graded response, nominal response, partial credit, and rating scale models, and any combination of them. And after fitting a model, irtgraph graphs item-characteristic curves, test characteristic curves, item information functions, and test information functions.
New in Stata 16, the irt commands allow comparisons across groups. Take any of the existing irt commands, add a group(varname) option, and fit the corresponding multiple-group model. For instance, type
. irt 2pl item1-item10, group(female)
and fit a two-group 2PL model.
Group-specific means and variances of the latent trait will be estimated. Group-specific difficulty and discrimination parameters can also be estimated for one or more items. With constraints, you can specify exactly which parameters are allowed to vary and which parameters are constrained to be equal across groups.
You can even use likelihood-ratio tests to compare models with and without constraints to perform an IRT model-based test of differential item functioning.
科学软件网主要提供以下科学软件服务:
1、软件培训服务:与国内大学合作,聘请业内人士定期组织软件培训,截止目前,已成功举办软件培训四十多期,累计学员2000余人,不仅让学员掌握了软件使用技巧,加深了软件在本职工作中的应用深度,而且也为**业人士搭建起了沟通的桥梁;
2、软件服务:提供软件试用版、演示版、教程、手册和参考资料的服务;
3、解决方案咨询服务:科学软件网可向用户有偿提供经济统计、系统优化、决策分析、生物制药等方面的解决方案咨询服务;
4、软件升级及技术支持服务:科学软件网可向用户提供软件的本地化技术支持服务,包括软件更新升级、软件故障排除、安装调试、培训等;
5、行业研讨服务:科学软件网会针对不**业,邀请国内外以及软件厂商技术人员,不定期在国内举办大型研讨会,时刻关注*技术,为国内行业技术发展提供导向。
http://turntech8843.b2b168.com