stata正版软件百科_正版软件
  • stata正版软件百科_正版软件
  • stata正版软件百科_正版软件
  • stata正版软件百科_正版软件

产品描述

使用期限租赁或* 许可形式单机和网络版 原产地美国 介质下载 适用平台window,mac,linux
科学软件网提供软件和培训服务已有19年,拥有丰富的经验,提供软件产品上千款,涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时还有的服务,现场培训+课程,以及本地化服务。
Posterior / Likelihood  Prior
If the posterior distribution can be derived in a closed form, we may proceed directly to the
inference stage of Bayesian analysis. Unfortunately, except for some special models, the posterior
distribution is rarely available explicitly and needs to be estimated via simulations. MCMC sampling
can be used to simulate potentially very complex posterior models with an arbitrary level of precision.
MCMC methods for simulating Bayesian models are often demanding in terms of specifying an efficient
sampling algorithm and verifying the convergence of the algorithm to the desired posterior distribution.
Inference is the next step of Bayesian analysis. If MCMC sampling is used for approximating the
posterior distribution, the convergence of MCMC must be established before proceeding to inference.
Point and interval estimators are either derived from the theoretical posterior distribution or estimated
from a sample simulated from the posterior distribution. Many Bayesian estimators, such as posterior
stata正版软件百科
Remarks and examples
Remarks are presented under the following headings:
What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics
Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction
Bayesian computation
Markov chain Monte Carlo methods
Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC
Summary
The first five sections provide a general introduction to Bayesian analysis. The remaining sections
provide a more technical discussion of the concepts of Bayesian analysis.
stata正版软件百科
The principles of Bayesian analysis date back to the work of Thomas Bayes, who was a Presbyterian
minister in Tunbridge Wells and Pierre Laplace, a French mathematician, astronomer, and physicist in
the 18th century. Bayesian analysis started as a simple intuitive rule, named after Bayes, for updating
beliefs on account of some evidence. For the next 200 years, however, Bayes’s rule was  an
obscure idea. Along with the rapid development of the standard or frequentist statistics in 20th century,
Bayesian methodology was also developing, although with less attention and at a slower pace. One
of the obstacles for the progress of Bayesian ideas has been the lasting opinion among mainstream
statisticians of it being subjective. Another more-tangible problem for adopting Bayesian models in
practice has been the lack of adequate computational resources. Nowadays, Bayesian statistics is
widely accepted by researchers and practitioners as a valuable and feasible alternative.
Bayesian analysis proliferates in diverse areas including industry and government, but its application
in sciences and engineering is particularly visible. Bayesian statistical inference is used in econometrics
(Poirier [1995]; Chernozhukov and Hong [2003]; Kim, Shephard, and Chib [1998], Zellner [1997]);
education (Johnson 1997); epidemiology (Greenland 1998); engineering (Godsill and Rayner 1998);
genetics (Iversen, Parmigiani, and Berry 1999); social sciences (Pollard 1986); hydrology (Parent
et al. 1998); quality management (Rios Insua 1990); atmospheric sciences (Berliner et al. 1999); and
law (DeGroot, Fienberg, and Kadane 1986), to name a few.
stata正版软件百科
We consider two types of CRIs. The first one is based on quantiles. The second one is the highest
posterior density (HPD) interval.
An f(1 ��  )  100g% quantile-based, or also known as an equal-tailed CRI, is defined as
(q =2; q1�� =2), where qa denotes the ath quantile of the posterior distribution. A commonly reported
equal-tailed CRI is (q0:025; q0:975).
HPD interval is defined as an f(1 ��  )  100g% CRI of the shortest width. As its name implies,
this interval corresponds to the region of the posterior density with the highest concentration. For a
unimodal posterior distribution, HPD is unique, but for a multimodal distribution it may not be unique.
Computational approaches for calculating HPD are described in Chen and Shao (1999) and Eberly
and Casella (2003).
科学软件网不仅提供软件产品,更有多项附加服务免费提供,让您售后**!
http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3274354位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图