本地化服务_stata实用教程
  • 本地化服务_stata实用教程
  • 本地化服务_stata实用教程
  • 本地化服务_stata实用教程

产品描述

使用期限租赁或* 许可形式单机和网络版 原产地美国 介质下载 适用平台window,mac,linux
科学软件网提供大量正版科学软件,满足各学科的科研要求。科学软件网专注软件销售服务已达19年,全国大部分高校和企事业单位都是我们的客户。同时,我们还提供本地化服务,助力中国的科研事业。
Remarks and examples
Remarks are presented under the following headings:
What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics
Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction
Bayesian computation
Markov chain Monte Carlo methods
Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC
Summary
The first five sections provide a general introduction to Bayesian analysis. The remaining sections
provide a more technical discussion of the concepts of Bayesian analysis.
stata实用教程
Nonparametric series regression
Stata 16's new npregress series command fits nonparametric series regressions that approximate the mean of the dependent variable using polynomials, B-splines, or splines of the covariates. This means that you do not need to specify any predetermined functional form. You specify only which covariates you wish to include in your model. For instance, type
. npregress series wineoutput rainfall temperature i.irrigation
Instead of reporting coefficients, npregress series reports effects, meaning average marginal effects for continuous variables and contrasts for categorical variables. The results might be that the average marginal effect of rainfall is 1 and the contrast for irrigation is 2. This contrast can be interpreted as the average treatment effect of irrigation.
Being a nonparametric regression, the unknown mean is approximated by a series function of the covariates. And yet we can still obtain the inferences that we could from a parametric model. We  use margins. We could type
. margins irrigation, at(temperature=(40(5)90))
and obtain a table of the expected effect of having irrigation at temperatures of 40, 50, ..., 90 degrees. And we could graph the result using marginsplot.
Even more, npregress series can fit partially parametric (semiparametric) models.
stata实用教程
出版质量的图形
Stata轻松生成出版质量、风格迥异的图形。您可以编写脚本并以可复制的方式生成成百上千个图形,并且可以以EPS
或TIF格式输出打印、以PNG格式或SVG格式输出放到网上、或PDF格式输出预览。使用这个图形编辑器可更改图形的任何
方面,或添加标题、注释、横线、箭头和文本。
stata实用教程
What is Bayesian analysis?
Bayesian analysis is a statistical analysis that answers research questions about unknown parameters
of statistical models by using probability statements. Bayesian analysis rests on the assumption that
all model parameters are random quantities and thus are subjects to prior knowledge. This assumption
is in sharp contrast with the more traditional, also called frequentist, statistical inference where all
parameters are considered unknown but fixed quantities. Bayesian analysis follows a simple rule
of probability, the Bayes rule, which provides a formalism for combining prior information with
evidence from the data at hand. The Bayes rule is used to form the so called posterior distribution of
model parameters. The posterior distribution results from updating the prior knowledge about model
parameters with evidence from the observed data. Bayesian analysis uses the posterior distribution to
form various summaries for the model parameters including point estimates such as posterior means,
medians, percentiles, and interval estimates such as credible intervals. Moreover, all statistical tests
about model parameters can be expressed as probability statements based on the estimated posterior
distribution.
科学软件网专注提供正版软件,跟上百家软件开发商有紧密合作,价格优惠,的和培训服务。
http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3273279位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图