stata正版软件学习_正版软件
  • stata正版软件学习_正版软件
  • stata正版软件学习_正版软件
  • stata正版软件学习_正版软件

产品描述

使用期限租赁或* 许可形式单机和网络版 原产地美国 介质下载 适用平台window,mac,linux
科学软件网提供软件和培训服务已有19年,拥有丰富的经验,提供软件产品上千款,涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时还有的服务,现场培训+课程,以及本地化服务。
Remarks and examples
Remarks are presented under the following headings:
What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics
Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction
Bayesian computation
Markov chain Monte Carlo methods
Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC
Summary
The first five sections provide a general introduction to Bayesian analysis. The remaining sections
provide a more technical discussion of the concepts of Bayesian analysis.
stata正版软件学习
Stata是一款完整的、集成的统计软件包,提供您需要的一切数据分析、数据管理和图形。


快速,简单并易于使用
点击式的界面和强大,直观的命令语言让Stata使用起来快速,并易于使用。
所有的分析结果都可以被复制和存档,并用来出版和审查。不管您什么时候写的内容,版本控制系统确保统计程序可继续生成同样的结果。


统计功能介绍
Stata使得大量的统计工具用于指尖
标准方法,如
基本表格和总结
案例对照分析
ARIMA
ANOVA 和MANOVA
线性回归
时间序列平滑
广义线性模型(GLM)
聚类分析
对比和比较
功率分析
样本选择
……
方法,如
当Stata执行您的分析或理解使用的方法时,Stata不会让您孤立无援或订购很多书籍来了解每个细节。
我们每一个数据管理功能都有完整的解释,并记录在案,并在实践中显示实际的例子。每一个估计都有完全记录,包含几个真实数据的例子,真正讨论如何解释结果。这些例子都给了数据,您可以直接在Stata中使用,甚至扩展您的分析。我们给您快速启动每一个功能,展示一些常用用途。想要了解更多细节,我们的方法和公式部分提供了计算的细节,我们参考部分会给出更多信息。
Stata是一个很大的软件包,包含了非常多的文档,**过27卷14,000页的内容。不用担心,在Help菜单中输入要搜索的内容,Stata会搜索到关键词、指数,甚至用户编写的程序包,这些会让您得到想要了解的一切。Stata包含了所有这些您想要的内容。
stata正版软件学习
主讲嘉宾
刘**,南开大学博士,曾赴爱尔兰格里菲斯学院交流学习,曾任河北金融学院教师,主讲计量经济学、统计学、与金融统计等课程。曾在《亚太经济》,《财经科学》,《农业技术经济》,《经济问题探索》等刊物发表多篇论文,并著有《中国金融发展的收入分配效应》。
stata正版软件学习
Frequentist inference is based on the sampling distributions of estimators of parameters and provides
parameter point estimates and their standard errors as well as confidence intervals. The exact sampling
distributions are rarely known and are often approximated by a large-sample normal distribution.
Bayesian inference is based on the posterior distribution of the parameters and provides summaries of
this distribution including posterior means and their MCMC standard errors (MCSE) as well as credible
intervals. Although exact posterior distributions are known only in a number of cases, general posterior
distributions can be estimated via, for example, Markov chain Monte Carlo (MCMC) sampling without
any large-sample approximation.
Frequentist confidence intervals do not have straightforward probabilistic interpretations as do
Bayesian credible intervals. For example, the interpretation of a 95% confidence interval is that if
we repeat the same experiment many times and compute confidence intervals for each experiment,
then 95% of those intervals will contain the true value of the parameter. For any given confidence
interval, the probability that the true value is in that interval is either zero or one, and we do not
know which. We may only infer that any given confidence interval provides a plausible range for the
true value of the parameter. A 95% Bayesian credible interval, on the other hand, provides a range
for a parameter such that the probability that the parameter lies in that range is 95%.
科学软件网的客户涵盖产品涵盖教育、、交通、通信、金融、保险、电力等行业,并且为诸如北京大学、*大学、中国大学、中科院、农科院、社科院、环科院、国家、交通部、南方电网、国家电网、许继、南瑞等国内大型企事业单位、部委和科研机构长期提供相关产品。我们的品质,值得您信赖。
http://turntech8843.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3273191位访客
版权所有 ©2025 八方资源网 粤ICP备10089450号-8 北京天演融智软件有限公司 保留所有权利.

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图